【OpenCV】访问图像中每个像素的值

2021腾讯云限时秒杀,爆款1核2G云服务器298元/3年!(领取2860元代金券),
地址https://cloud.tencent.com/act/cps/redirect?redirect=1062

2021阿里云最低价产品入口+领取代金券(老用户3折起),
入口地址https://www.aliyun.com/minisite/goods

转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7557063

!!此篇是基于IplImage* (C接口或者说2.1之前版本的接口,新的Mat的访问方式请参考博文: 《访问Mat图像中每个像素的值》

IplImage是OpenCV中CxCore部分基础的数据结构,用来表示图像,其中Ipl是Intel Image Processing Library的简写。以下是IplImage的结构分析(来自OpenCV中文网站:http://www.opencv.org.cn/index.php/Cxcore%E5%9F%BA%E7%A1%80%E7%BB%93%E6%9E%84#IplImage

typedef struct _IplImage
    {
        int  nSize;         /* IplImage大小 */
        int  ID;            /* 版本 (=0)*/
        int  nChannels;     /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */
        int  alphaChannel;  /* 被OpenCV忽略 */
        int  depth;         /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,
                               IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */
        char colorModel[4]; /* 被OpenCV忽略 */
        char channelSeq[4]; /* 同上 */
        int  dataOrder;     /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道.
                               cvCreateImage只能创建交叉存取图像 */
        int  origin;        /* 0 - 顶—左结构,
                               1 - 底—左结构 (Windows bitmaps 风格) */
        int  align;         /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */
        int  width;         /* 图像宽像素数 */
        int  height;        /* 图像高像素数*/
        struct _IplROI *roi;/* 图像感兴趣区域. 当该值非空只对该区域进行处理 */
        struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */
        void  *imageId;     /* 同上*/
        struct _IplTileInfo *tileInfo; /*同上*/
        int  imageSize;     /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/
        char *imageData;  /* 指向排列的图像数据 */
        int  widthStep;   /* 排列的图像行大小,以字节为单位 */
        int  BorderMode[4]; /* 边际结束模式, 被OpenCV忽略 */
        int  BorderConst[4]; /* 同上 */
        char *imageDataOrigin; /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */
    }
    IplImage;

直接访问:

对我们来说比较重要的两个元素是:char *imageData以及widthStep。imageData存放图像像素数据,而widStep类似CvMat中的step,表示以字节为单位的行数据长度。

一个m*n的单通道字节型图像,其imageData排列如下:


如果我们要遍历图像中的元素,只需:

推荐:opencv中针对IplImage图像数据结构 怎么访问图像像素?

[http://www.opencv.org.cn/index.php/Template:FAQ怎么访问图像像素 (坐标是从0开始的,并且是相对图像原点的位置。图像原点或者是左上角 (img->origin=IPL_ORIGIN_TL)

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
uchar* tmp;
for(int i=0;i<img->height;i++)
	for(int j=0;j<img->width;j++)
		*tmp=((uchar *)(img->imageData + i*img->widthStep))[j];

这种直接访问的方法速度快,但容易出错,我们可以通过定义指针来访问。即:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
ucha* data=(uchar *)img->imageData;
int step = img->widthStep/sizeof(uchar);
uchar* tmp;
for(int i=0;i<img->height;i++)
	for(int j=0;j<img->width;j++)
		*tmp=data[i*step+j];

而多通道(三通道)字节图像中,imageData排列如下:

其中(Bi,Bj)(Gi,Gj)(Ri,Rj)表示图像(i,j)处BGR分量的值。使用指针的遍历方法如下:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
uchar* data=(uchar *)img->imageData;
int step = img->widthStep/sizeof(uchar);
int channels = img->nChannels;
uchar *b,*g,*r;
for(int i=0;i<img->height;i++)
     for(int j=0;j<img->width;j++){
           *b=data[i*step+j*chanels+0];
           *g=data[i*step+j*chanels+1];
           *r=data[i*step+j*chanels+2];
      }

*如果要修改某像素值,则直接赋值。

使用cvGet2D()函数访问:

cvGet*D系列函数可以用来返回特定位置的数组元素(一般使用cvGet2D),原型如下:
CvScalar cvGet1D( const CvArr* arr, int idx0 );
CvScalar cvGet2D( const CvArr* arr, int idx0, int idx1 );
CvScalar cvGet3D( const CvArr* arr, int idx0, int idx1, int idx2 );
CvScalar cvGetND( const CvArr* arr, int* idx );
idx0,idx1,idx2分别用来指示元素数组下标,即cvGet2D返回(idx0,idx1)处元素的值。
因此,单通道图像像素访问方式如下:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
double tmp;
for(int i=0;i<img->height;i++)
	for(int j=0;j<img->width;j++)
		tmp=cvGet2D(img,i,j).val[0];
多通道字节型/浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
double tmpb,tmpg,bmpr;
for(int i=0;i<img->height;i++)
	for(int j=0;j<img->width;j++){
		tmpb=cvGet2D(img,i,j).val[0];
		tmpg=cvGet2D(img,i,j).val[1];
		tmpr=cvGet2D(img,i,j).val[2];
	}
如果是修改元素的值,可用cvSet*D(一般是cvSet2D)函数:
void cvSet1D( CvArr* arr, int idx0, CvScalar value );
void cvSet2D( CvArr* arr, int idx0, int idx1, CvScalar value );
void cvSet3D( CvArr* arr, int idx0, int idx1, int idx2, CvScalar value );
void cvSetND( CvArr* arr, int* idx, CvScalar value );
这种方法对于任何图像的访问方式是一样的,比较简单,但效率较低,不推荐使用。


相关推荐